\(\int \frac {\sqrt {c-c \sin (e+f x)}}{(3+3 \sin (e+f x))^{3/2}} \, dx\) [392]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 41 \[ \int \frac {\sqrt {c-c \sin (e+f x)}}{(3+3 \sin (e+f x))^{3/2}} \, dx=-\frac {c \cos (e+f x)}{f (3+3 \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \]

[Out]

-c*cos(f*x+e)/f/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {2817} \[ \int \frac {\sqrt {c-c \sin (e+f x)}}{(3+3 \sin (e+f x))^{3/2}} \, dx=-\frac {c \cos (e+f x)}{f (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}} \]

[In]

Int[Sqrt[c - c*Sin[e + f*x]]/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

-((c*Cos[e + f*x])/(f*(a + a*Sin[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]]))

Rule 2817

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = -\frac {c \cos (e+f x)}{f (a+a \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(87\) vs. \(2(41)=82\).

Time = 1.02 (sec) , antiderivative size = 87, normalized size of antiderivative = 2.12 \[ \int \frac {\sqrt {c-c \sin (e+f x)}}{(3+3 \sin (e+f x))^{3/2}} \, dx=-\frac {\sqrt {1+\sin (e+f x)} \sqrt {c-c \sin (e+f x)}}{3 \sqrt {3} f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3} \]

[In]

Integrate[Sqrt[c - c*Sin[e + f*x]]/(3 + 3*Sin[e + f*x])^(3/2),x]

[Out]

-1/3*(Sqrt[1 + Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])/(Sqrt[3]*f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(Cos[(
e + f*x)/2] + Sin[(e + f*x)/2])^3)

Maple [A] (verified)

Time = 2.85 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.95

method result size
default \(\frac {\tan \left (f x +e \right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}}{f a \sqrt {a \left (\sin \left (f x +e \right )+1\right )}}\) \(39\)

[In]

int((c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/f*tan(f*x+e)*(-c*(sin(f*x+e)-1))^(1/2)/a/(a*(sin(f*x+e)+1))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 58, normalized size of antiderivative = 1.41 \[ \int \frac {\sqrt {c-c \sin (e+f x)}}{(3+3 \sin (e+f x))^{3/2}} \, dx=-\frac {\sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{a^{2} f \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a^{2} f \cos \left (f x + e\right )} \]

[In]

integrate((c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

-sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(a^2*f*cos(f*x + e)*sin(f*x + e) + a^2*f*cos(f*x + e))

Sympy [F]

\[ \int \frac {\sqrt {c-c \sin (e+f x)}}{(3+3 \sin (e+f x))^{3/2}} \, dx=\int \frac {\sqrt {- c \left (\sin {\left (e + f x \right )} - 1\right )}}{\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((c-c*sin(f*x+e))**(1/2)/(a+a*sin(f*x+e))**(3/2),x)

[Out]

Integral(sqrt(-c*(sin(e + f*x) - 1))/(a*(sin(e + f*x) + 1))**(3/2), x)

Maxima [F]

\[ \int \frac {\sqrt {c-c \sin (e+f x)}}{(3+3 \sin (e+f x))^{3/2}} \, dx=\int { \frac {\sqrt {-c \sin \left (f x + e\right ) + c}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-c*sin(f*x + e) + c)/(a*sin(f*x + e) + a)^(3/2), x)

Giac [A] (verification not implemented)

none

Time = 0.51 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.29 \[ \int \frac {\sqrt {c-c \sin (e+f x)}}{(3+3 \sin (e+f x))^{3/2}} \, dx=\frac {\sqrt {c} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{2 \, a^{\frac {3}{2}} f \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} \]

[In]

integrate((c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

1/2*sqrt(c)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(a^(3/2)*f*cos(-1/4*pi + 1/2*f*x + 1/2*e)^2*sgn(cos(-1/4*pi +
1/2*f*x + 1/2*e)))

Mupad [B] (verification not implemented)

Time = 7.83 (sec) , antiderivative size = 52, normalized size of antiderivative = 1.27 \[ \int \frac {\sqrt {c-c \sin (e+f x)}}{(3+3 \sin (e+f x))^{3/2}} \, dx=-\frac {2\,\cos \left (e+f\,x\right )\,\sqrt {-c\,\left (\sin \left (e+f\,x\right )-1\right )}}{a\,f\,\left (\cos \left (2\,e+2\,f\,x\right )+1\right )\,\sqrt {a\,\left (\sin \left (e+f\,x\right )+1\right )}} \]

[In]

int((c - c*sin(e + f*x))^(1/2)/(a + a*sin(e + f*x))^(3/2),x)

[Out]

-(2*cos(e + f*x)*(-c*(sin(e + f*x) - 1))^(1/2))/(a*f*(cos(2*e + 2*f*x) + 1)*(a*(sin(e + f*x) + 1))^(1/2))